Lynn Sloman and colleagues of Transport for Quality of Life (TQL) issued a report about carbon emissions arising from the Department for Transport’s second Road Investment Strategy (RIS2). Their detailed analysis reaches the conclusion that the increase in CO2 from RIS2 would negate 80% of potential carbon savings from electric vehicles on the Strategic Road Network (SRN) between now and 2032.

This conclusion struck me as surprising. Although annual expenditure on new capital projects for the SRN has been running at over £2 billion a year, civil engineering is very costly and we don’t get much extra capacity for our money. The recent rate of addition of lane-miles to the SRN has been 0.5% a year, which is less than the rate of population growth. So how could such a low rate of addition of capacity have such a large adverse impact on carbon emissions? We need to question the TQL calculations.

TQL argues that the RIS2 road schemes will increase carbon emissions in a number of ways, particularly by increasing speeds and inducing more traffic, both of which they believe are underestimated in conventional scheme appraisal. They therefore estimate the additional cumulative carbon emissions from these sources, both put at around 6 Mt CO2 for the period 2020-2032. But I wonder if there is not some overstating here, given that more traffic would tend to reduce speeds. For instance, for a scheme to widen part of the M25, I found that outturn traffic flows were higher than forecast, such that there was no increase in traffic speed.

TQL estimate that RIS2 would increase carbon emissions by 20 Mt CO2 for the period 2020-2032, including carbon from construction. This is then compared with the difference in carbon emissions between two scenarios from the DfT Road Traffic Forecasts 2018, the Scenario 1 reference case and Scenario 7 high electric vehicle case, which amounts to a reduction of 25 Mt, hence the conclusion that the increased carbon emissions would negate 80% of the benefit of the shift to EVs.

There are, however, problems with this estimate of carbon reduction from EVs. Scenario 7 assumes no tax on EVs to replace fuel duty, so that the cost of motoring decreases substantially (by 60% by 2050), hence a projected large increase in traffic compared with Scenario 1 (50% increase by 2050 compared with 35% for the reference case). Whatever the realism of the assumption about tax, such a large increase in traffic is implausible as the consequence of electrification. Average travel time has remained constant at about an hour a day for the past 45 years at least, hence to travel further it would be necessary to travel faster, which will not happen through a change in propulsion. The problem is that the Road Traffic Forecasts derive from the National Transport Model, which does not recognise travel  time constraints.

An assumption that electrification has no effect on traffic volumes would substantially increase the scale of carbon reduction under Scenario 7, to which could be added the benefit of bringing forward the phase out of non-electric cars and vans earlier than 2040, as assumed in that Scenario. And if we reduce the additional carbon from the RIS2 programme to allow for some overstating, then we could arrive at a less pessimistic conclusion than the TQL authors about the carbon impact of this programme on future overall SRN emissions.

Nevertheless, despite these caveats, I agree with the conclusions of the TQL report that RIS2 is anachronistic, and that cancellation would free up substantial investment for better uses, not least fast broadband to lessen the need for travel, both for commuting and on business. The SRN is under greatest traffic stress in or near urban centres during the morning and late afternoon peaks, when car travel to and from work interferes with long distance road users. The economic case for road investment needs to be reconsidered in the light of changes in daily travel prompted by the pandemic.

The National Infrastructure Commission (NIC) has issued an interim report on its assessment of rail needs for the Midlands and the North. It sets out a methodology for appraising investment options. The aim is to assess the potential benefits of possible investment packages, focussing on what rail is good at compared to other modes: transporting people into dense city centres and providing high speed links between cities.

The NIC believes that existing approaches to assessing the impact of rail investments on economic growth, such as conventional cost benefit analysis, fail to fully capture the interactions between rail investments and other factors, such as skilled employment and urban development.

Specifically, the NIC notes that conventional cost-benefit analysis in transport starts from ‘user benefits’ such as journey time savings. Wider economic benefits from agglomeration can then be added provided care is taken to avoid double-counting. However, this approach has been criticised for commuter journeys, because assumptions made around time savings do not appear consistent with the empirical evidence on travel times (this is a reference to my longstanding observation of the invariance of average travel time). Instead, the intention is to assess the economic benefits of increased transport capacity that allows more people to travel into city centres, thus increasing the agglomeration benefits that arise from density.

This is a rather radical approach, which runs counter to half a century of conventional transport economic analysis, and which I welcome, as a long time critic of orthodoxy. I look forward to seeing how its works out in practice.

I previously noted publication by the Department for Transport of its Second Road Investment Strategy (RIS2). DfT has now issued an economic analysis that concludes that the new programme represents high value for money. I had hope that this document would provide substantiation of the £27 billion, 5-year road investment programme but I was disappointed.

The summary states that overall RIS2 is High Value for Money, meaning £2 return for every £1 spent (Benefit-Cost Ratio of 2). Yet new commitments of major capital enhancement schemes yield a BCR of 1.5, which is unimpressive. The analysis is minimal, offering no breakdown into individual schemes, where some might be expected to have a BCR of 1 or less if the average is 1.5.

These estimates are based on the now rather dated Road Traffic Forecasts published in 2018, which included five distinct scenarios, yet no indication is given as to how the BCR would vary with scenario. The estimates are also derived from new but unpublished regional traffic models, asserted to be ‘world leading’.

I previously pointed out a major discrepancy between traffic forecasts and post-opening outturn for the smart motorway widening of the M25 between Junctions 23 and 27. These forecasts were generated by a regional model of the kind now in general use by Highways England, based on SATURN software that originated in the 1980s. The purpose of these models is to estimate travel time savings that arise from adding carriageway, which feed into an economic model. Yet in the M25 case, no time savings were observed beyond year 1 after opening, putting the validity of such models  in doubt.

The new DfT analysis frequently asserts that its analysis is robust (15 times, in fact), which is usually a sign of intellectual insecurity. In fact, the analysis is pretty thin and seems intended to justify a road construction programme developed in earlier era, before we have had a chance to assess the impact of the coronavirus pandemic and what this might mean for travel demand and for public expenditure priorities, urban vs. inter-urban transport vs. broadband.

An on-line meeting organised by Local Transport Today on 19 June was concerned with the future of car travel after the coronavirus pandemic. I contributed the following thoughts.

The average distance travelled by car in the UK per person ceased to grow at turn of century, following strong growth in the last century. This phenomenon has been called ‘Peak Car’, but ‘Plateau Car’ would be a better term, given the 20-year flat trend. But with the coronavirus pandemic, we have three new influences that could affect the trend of car use in the longer run.

First, a natural preference for the car in place of public transport during the pandemic, which will add to road traffic congestion. Second, less road space for cars in urban areas to allow more room for active travel, both as response to the pandemic and to promote longer term reduction in carbon emissions and improve urban air quality; this also will tend to increase congestion, unless car users could be persuaded to switch to active modes. Third, less car travel due to more working at home, more video-conferencing, and more on-line shopping, accentuating recent trends; this would relieve congestion. We can’t yet estimate the likely magnitude of these influences, so can only speculate in broad terms how they may play out.

Might active travel substitute for some car use? The London Mayor aims to increase cycling 10-fold. That would take mode share to 30%, as Copenhagen, a city with comprehensive cycling infrastructure. Yet car use in Copenhagen only slightly less than in London, while public transport use half that in London – 18% mode share vs 37% in London.

It seems that people can be attracted off buses onto bikes, which are cheaper, healthier, environmentally better, and no slower in congested traffic. Yet this would reduce fare income to public transport and likely the level of service. In contrast, it seems harder to get people out of cars onto bikes, even in Copenhagen where most motorists have bikes at home.

The fundamental problem in getting people to travel by slower modes is the consequent reduction in access. The key historic transport innovations all increased access. Railways, the modern bicycle, motor car, motorised two-wheelers, each offered a step change increase in speed of travel and hence in access to people, places, opportunities and choices. Access increases with the square of the speed of travel. Comparing walking at 3 mph with urban car travel at say 20mph, a 7-fold increase in speed, yielding a 50-fold increase in access to desired destinations. Comparing cycling at 10mph with car travel – twice the speed giving four times the access. People have become used to the access offered by the car and most would be reluctant to settle for less by opting for slower modes.

To reduce car use, we need to offer a mode that is faster and more reliable than the car on congested roads, which is rail – interurban between cities, commuting into cities, and rail in all its forms within cities. Investment in rail in London has been important in reducing car mode share from 50% in early 1990s to the current 36%. But continuation of that shift depends not only on successfully tacking the coronavirus pandemic, but also continuing to invest in urban rail, which is very costly and so limits expansion of rail travel.

The other way of reducing car use is to lessen the need to travel for work. The pandemic has shown us how we can manage to travel much less, but this is undoubtedly suboptimal. The magnitude of the rebound remains to be seen. Investment in broadband could facilitate remote working and could be much more cost-effective than new road capacity.

 All in all, I do not expect to see a substantial change in per capita car use nationally, once the pandemic is behind us, but we could be at the start of a downward trend, reflecting less need to travel and some switching to other modes. It may turn out that we are now at the peak of car travel on a per capita basis, which should prompt review of all those ‘shovel ready’ schemes in the road construction programme.

As a means to decarbonise the transport system, the contribution of behavioural change is problematic to rely on because of the uncertainties of responses to both the easing of lockdown restrictions and policy interventions aimed at changing travel behaviour. This means that we need a strong commitment to technology in the form of electrification, both to cut transport carbon emissions and improve urban air quality.

The other new technology – automation – is not a solution to the problems we face. It will be difficult to deploy autonomous vehicles on the existing road network. The technology is expensive and the benefits limited, so that the appetite of consumers is uncertain. The car manufacturers will give priority of electric vehicles, leaving automation to be developed in the slow lane.

The Department for Transport recently issued a report concluding that the Second Road Investment Strategy (RIS2) represents high value for money. One might have thought that this 29-page RIS2 Analysis Overview would porvide substantiation of the £27 billion, 5-year road investment programme announced earlier. We are disappointed.

The summary states that overall RIS2 is High Value for Money, meaning £2 return for every £1 spent (Benefit-Cost Ratio of 2). Yet new commitments of major capital enhancement schemes yield a BCR of 1.5, which is unimpressive. The analysis is minimal, offering no breakdown into individual schemes, where some might be expected to have a BCR of 1 or less if the average is 1.5.

These estimates are based on the now rather dated Road Traffic Forecasts published in 2018, which included five distinct scenarios, yet no indication is given as to how the BCR would vary with scenario. The estimates are also derived from new but unpublished regional traffic models, asserted to be ‘world leading’.

I previously drew attention to a major discrepancy between traffic forecasts and post-opening outturn for the smart motorway widening of the M25 between Junctions 23 and 27. These forecasts were generated by a regional model of the kind now in general use by Highways England, based on SATURN software that originated in the 1980s. The purpose of these models is to estimate travel time savings that arise from adding carriageway, which feed into an economic model. Yet in the M25 case, no time savings were observed beyond year 1 after opening, putting the validity of such models  in doubt.

The DfT report frequently asserts that its analysis is robust (15 times, in fact), which is usually a sign of intellectual insecurity. In fact, the analysis is pretty thin and seems intended to justify a road construction programme developed in earlier era, before we have had a chance to assess the impact of the coronavirus pandemic and what this might mean for travel demand and for public expenditure priorities, urban vs. inter-urban transport vs. broadband.

The Department for Transport has initiated an exercise to assess how the transport system could be decarbonised, in line with the Government’s commitment to a net zero carbon target for the whole economy by 2050.

I have submitted some thoughts on behavioural aspects, including the scope for increasing active travel, decreasing motorised road travel and air travel, and the need to improve modelling to accomodate such behavioural changes.

The Secretary of State for Transport has announced £2 billion of investment to boost cycling and walking in response to the Covid pandemic. The Mayor of London has plans that he hopes will increase cycling ten-fold and walking five-fold post-lockdown. These intentions take advantage of current public health constraints on use of public transport and are certainly praiseworthy, but there are serious questions about feasibility.

Increasing cycling in London ten-fold would take its share of trips to that found in Copenhagen, where there are segregated cycling lanes on all roads with significant traffic. Moreover, the city is relatively small, such that you can cycle from the centre to the edge in an hour or so, as I have done but would not attempt in London. However, car use in Copenhagen is only slightly less than in London, while public transport mode share is half that in London. This indicates that you can get people off buses onto bikes, which are cheaper, healthier, better environmentally, and no slower in traffic than public transport. But it seems more difficult to get people out of their cars, even in a city where virtually all motorists have current or past experience of cycling. And a decrease in users of public transport, while helpful while the pandemic lasts, would lead in the longer term to loss of fare revenue and of level of service.

Transport for London (TfL) analysed cycling potential in 2017, considering which trips by motorised modes could reasonably be cycled, mainly taking into account trip length. If achieved in full, cycling would be responsible for 40% of all trips, which would be consistent with the Mayor’s ambition. However, a large proportion of potential cycling trips are currently done with at least one other person, which would limit switching. Beyond that observation, considerations of behaviour change and public acceptability were not taken into account.

Boosting walking five-fold is even more problematic, to say the least, given that its mode share of trips in London has long been stable at 25%. Some modest increase in the near term is likely as people avoid short bus journeys. Perhaps the Mayor has in mind to increase the distance walked per trip, which again is likely to some extent in the near term. Yet walking is the slowest mode of travel and time available for travelling is always a constraint. A TfL analysis of walking potential in 2017 estimated that there are more than two million potentially walking trips in London per day, compared with just under one million at present, but most potential walking trips could also be cycled. So it is very hard to see how a five-fold increase in walking could be achieved, even before we consider behavioural factors, in particular the reasons why so many people prefer to drive rather than walk short journeys.

To see if the Mayor’s ambition is realistic, we need a full analysis from TfL, taking into account behavioural aspects, including travel time constraints, and avoiding double counting. It also needs to show that the cost of new cycling infrastructure to meet objectives is affordable, given the current loss of revenue, and to recognise the implications for public transport of the longer-term loss of fare income.

This blog post also appeared as a letter in Local Transport Today 29 May 2020.

The Full Business Case for HS2 Phase One has now been published. This  supports the Government’s decision to go ahead with the entire new rail route from London to the cities of the Midlands and the North, despite the dramatic escalation in construction costs, from £37.5bn in 2011, to £50bn in 2013, to £65bn in 2015, to £109m in the latest business case, and doubtless even more in eventual outturn.

It is noteworthy that the initial increases in the cost of HS2 did not change the supposed economic benefits, as measured by the benefit-to-cost ration (BCR), which held steady at close to 2.0, representing ‘high’ value-for-money according to the DfT’s Value for Money framework for economic appraisal. This was the result of substantial additional benefits being recognised by the promoters, even though nothing fundamental had changed in the business case. However, last year independent reviews by Douglas Oakervee and by the National Audit Office estimated higher capital costs that reduced the BCR to 1.5 or lower.

The new business case recognises these new capital costs but fails to identify any compensating additional benefits, such that Phase One (London to Birmingham) has a central-case BCR of 1.2, while the full “Y” network has a BCR of 1.5. Accordingly, Phase One has been assessed as ‘low’ value-for-money, while the full network would be ‘low to medium’. Any further increase in capital costs would reduce the outturn BCR, as would less demand than assumed for rail travel over the 60-year forecast period.

It is surely remarkable that the largest ever UK transport infrastructure investment is proceeding on the basis of such low returns, given the great number of more attractive potential such investments. Is this a case of politics trumping economics, or are the politicians right to see benefits not recognised by orthodox economic analysis?

The precedent of the Jubilee Line Extension (JLE) to London’s Docklands, with a BCR of less than one on the standard approach to appraisal, indicates the potential regeneration benefits that may be achieved. The increased real estate values, reflecting the economic benefits to businesses locating at Canary Wharf and beyond, were not taken into account since this would supposedly involve doubling counting benefits implicit in the value of travel time savings, the main element of economic benefit in the standard DfT WebTAG appraisal methodology. These time savings comprise small amounts of time saved by large numbers of commuters, valued by market research techniques that require respondents to trade time and money in the short run. Yet it is scarcely credible that the aggregate of such time savings could provide a measure of the long run cumulative real estate value uplift, whether for the JLE or for HS2.

Moreover, orthodox investment appraisal has no spatial content, no indication of the geographical distribution of economic benefits. This is a crucial issue for HS2, the strategic aim of which is to boost the economies of the cities of the Midlands and the North.

More fundamentally, the importance attached to travel time savings is misconceived. The National Travel Survey has been measuring average travel time for 45 years, over which period it has hardly changed, despite many £billions of public investment in transport infrastructure justified by the value of supposed time savings. In reality, people take the benefit of such investment not in the form of more time for work or leisure, but as greater access to desired destinations yielding more opportunities and choices. The purpose of HS2 is to increase the access to London of those living in the Midlands and the North (and vice-versa). Increased access will lead to changed land use and enhanced real estate values, which are the market indicators of economic development.

It is possible that the real economic benefits of HS2 are substantially greater than calculated in the Full Business Case using the WebTAG methodology. It is therefore time to reconsider the basis of transport economic appraisal from first principles.

This blog post appeared as a Comment to a feature about the HS2 Business Case published in Local Transport Today 15 May 2020.

The Covid-19 epidemic has prompted discussion of the implications for travel behaviour once it is over. Will the recent downward trend in trips to work and for shopping accentuate? Might people prefer their cars and bikes to travel on crowded public transport? Will there be a bounce back in leisure air travel? All is speculation at present.

More immediately, we see that the new highly infectious virus has prompted huge and rapid global efforts of technological development: tests for the virus and antibody, and novel vaccines. The epidemic has also stimulated extensive efforts to model the consequences, modelling that is open, transparent and collaborative, and that has proved crucial in informing government decisions, in particular to see how new technologies can lessen the need for social distancing.

There are lessons for the transport sector, for which the main priority must be decarbonisation to achieve the government’s net zero carbon target by 2050. Technological development should be stepped up in the areas of batteries for surface transport, and new propulsion technologies for aviation and marine. Electric charging infrastructure needs to be made generally available to stimulate the purchase of electric vehicles.

The models employed in the transport sector are neither open nor transparent. They are obsolete in that they were developed well before current concerns with carbon emissions and are deficient in predicting observed outcomes. We need a new generation of travel/transport models that are open, transparent, and possibly crowdsourced, to inform decisions on policies for decarbonisation, including how new technology can complement behavioural change.

Transport decarbonisation is the top priority. In contrast, automation is not important. As I argued in my recent book, Driving Change, autonomous vehicles will be difficult to deploy on the existing road network, and the benefits are quite limited. It is for the car industry to develop automated features if it thinks that customers might purchase such vehicles. It is for governments to put in place suitable regulatory regimes. But it should not be a priority for governments to support the development of the technology, which would be a distraction from decarbonisation efforts.

This blog post appeared also as a letter in Local Transport Today 17 April 2020